
PHYSICAL REVIEW E MARCH 1997VOLUME 55, NUMBER 3
Viscosity of colloidal suspensions
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Interfaculty Reactor Institute, Delft University of Technology, 2629 JB Delft, The Netherlands

E. G. D. Cohen
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~Received 13 June 1996!

Simple expressions are given for the Newtonian viscosityhN(f) as well as the viscoelastic behavior of the
viscosityh(f,v) of neutral monodisperse hard-sphere colloidal suspensions as a function of volume fraction
f and frequencyv over theentire fluid range, i.e., for volume fractions 0,f,0.55. These expressions are
based on an approximate theory that considers the viscosity as composed as the sum of two relevant physical
processes:h(f,v)5h`(f)1hcd(f,v), whereh`(f)5h0x(f) is the infinite frequency~or very short time!
viscosity, with h0 the solvent viscosity,x(f) the equilibrium hard-sphere radial distribution function at
contact, andhcd(f,v) the contribution due to the diffusion of the colloidal particles out of cages formed by
their neighbors, on the Pe´clet time scaletP , the dominant physical process in concentrated colloidal suspen-
sions. The Newtonian viscosityhN(f)5h(f,v50) agrees very well with the extensive experiments of van
der Werff et al., @Phys. Rev. A39, 795 ~1989!; J. Rheol.33, 421 ~1989!# and others. Also, the asymptotic
behavior for largev is of the formh`(f)1h0A(f)(vtP)

21/2, in agreement with these experiments, but the
theoretical coefficientA(f) differs by a constant factor 2/x(f) from the exact coefficient, computed from the
Green-Kubo formula forh(f,v). This still enables us to predict for practical purposes the viscoelastic
behavior of monodisperse spherical colloidal suspensions for all volume fractions by a simple time rescaling.
@S1063-651X~97!09303-3#

PACS number~s!: 82.70.Dd, 83.50.Fc, 83.50.Gd, 83.10.Ff
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I. INTRODUCTION

In a number of previous papers we have discussed
Newtonian viscosity as well as the viscoelastic behavior
concentrated colloidal suspensions, consisting of mono
perse neutral hard-sphere particles@1–4#. The motivation
was to understand theoretically the very extensive visco
measurements on colloidal suspensions carried out by
der Werff et al. @5,6# ~see Table I!. In particular, these ex
periments on carefully prepared systems seemed to b
ideal testing ground for the theory. In this paper a mo
complete and detailed account of the viscous behavio
colloidal suspensions over their fluid range will be given.

In the past, many theoretical investigations have been
ried out of the rheological properties of colloidal suspe
sions. Most of this work concerned the shear-rate dep
dence of the viscosity of dilute or semidilute~charged!
suspensions consisting of Brownian particles, interact
with soft potentials@7–9#. Therefore, a comparison betwee
our results and those would only be possible for the Newt
ian viscosity, except for the essential difference in the int
particle potential. The viscoelastic properties of neutral ha
sphere suspensions with which we are exclusively conce
here have been considered by Brady@10#, and Cichocki and
Felderhof @11,12#. Their work will be discussed and com
pared, where possible with ours, in some detail below. Bla
zdziewicz and Szamel@13# have considered the shear-rat
dependent viscosity of semidilute neutral hard-sph
colloidal suspensions. We will show that our result for t
Newtonian viscosity reduces in the semidilute limit to th
result for vanishing shear rate.

Our theoretical approach is based on two physical p
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cesses related to the two widely separated basic time sc
in a colloidal suspension: the Brownian timetB;1028 s,
during which a single Brownian particle ‘‘forgets’’ its initia
velocity, and the interaction time or Pe´clet time
tP5s2/4D0;1023 s, during and beyond which Brownia
particle interactions take place. Heres is the diameter of the
hard-sphere colloidal particles andD0 the Stokes-Einstein
colloidal particle diffusion coefficient at infinite dilution. Th
viscosity is consequently considered as composed of a
of contributions that take place on a short- and a long-ti
scale. Although the theory is constructed for concentra
colloidal suspensions with volume fractions 0.3,f,0.55, it
appears that the theory also gives good numerical results
lower concentrations, so that effectively formulas are o
tained that cover the entire fluid range 0,f,0.55. Here
f5nps3/6, wheren is the number density of the hard
sphere colloidal particles.

The suspension is considered as a homogeneous fluid
sisting of spherical particles immersed in a continuum s
vent. As a consequence, formulas derived for simple hom
geneous fluids in general, such as the Irving-Kirkwo
expression for the pressure tensor@14,15# or the Green-Kubo
formula for the viscosity@16#, are also assumed to be app
cable here. The formulas for the viscous behavior are deri

TABLE I. Characteristic values of the model systems used@5,6#.

System s ~nm!~DLS! h0 (10
12 s21 m22) tP ~ms!

SP 23 286 2 8.68 0.0903
SSF 1 466 2 5.29 0.400
SJ 18 766 2 3.20 1.81
3143 © 1997 The American Physical Society



ify
th
o
-

-
se

-

e
g

-
tri

re
h-

e

r-
st

n
om
e

its
i
-
r
c
f
s
of

e

r

um
r
lo
e

le

e
wo

t

th
io

of
n
to
ior
r-
ity
ic
e

ts
d

es
on-
of
een

by
g a

e
n

ap-

3144 55R. VERBERG, I. M. de SCHEPPER, AND E. G. D. COHEN
under a number of assumptions, which we will try to just
physically as well as possible, but which, considering
complexity of this strongly interacting system, we have n
been able to derive from first principles or justify com
pletely.

The two basic physical processes we referred to are
follows: ~i! At short timest<tB!tP and nonzero concen
trations, the viscosity of the suspension effectively increa
when compared to that of the~pure! solvent viscosityh0 at
infinite dilution, due to the finite probability to find two par
ticles at contact, and~ii ! at long timest;tP@tB , it is dif-
ficult for a Brownian particle to diffuse out of the cag
formed around it by its neighbors, characterized by a ca
diffusion coefficientDc(k;f).

As for ~i!, the probability to find two particles in the sus
pension at contact is given by the equilibrium radial dis
bution function at contact:geq(s;f)[x(f) @17#, which fol-
lows from the canonical distribution of the hard-sphe
colloidal particles. As a result, the effective very-hig
frequency viscosity of the suspension satisfiesh`(f)5
h0x(f), a relation that is consistent with experiment ov
the entire fluid range@4# ~cf. Fig. 2!. Similarly, the very-
short-time self-diffusion coefficient of the Brownian pa
ticles past each other is decreased from the Stokes-Ein
valueD0 at infinite dilution to a valueDs(f)5D0 /x(f),
since x(f) also gives the increase in the binary collisio
frequency in a dense hard-sphere gas in equilibrium as c
pared to that in a dilute gas. Also this relation has be
confirmed by experiment@4#.

As for ~ii !, the cage-diffusion coefficientDc(k;f) refers
to the diffusion of a particle out of a cage formed by
neighbors when the particles are distributed periodically
the solvent with a wave numberk. For concentrated suspen
sions one should bear in mind that a typical wave numbe
k'k*52p/s, corresponding to a surface to surface distan
of two neighboring Brownian particles of typically 1/10 o
their diameters, so that the particles ‘‘rattle’’ in their cage
before they diffuse out in a time of the order
tP'tc(k* ;f)51/Dc(k* ;f)k*

2. In Fig. 1~a! tc(k;f)/tP is
plotted as a function ofk5ks for four values of f.
tc(k;f) andtP are clearly of the same order of magnitud
the pronounced maximum oftc(k;f) at k5k* correspond-
ing to the ‘‘rattling in the cage.’’ An explicit expression fo
the cage-diffusion coefficientDc(k;f) has been obtained
from kinetic theory@18#. SinceDc(k;f) also characterizes
the decay of a spontaneous density fluctuation of wave n
ber k in the suspension@19#, it can be measured by light o
neutron scattering and the expression we give for it be
has been shown to be in good agreement with such exp
ments@cf. Fig. 1~b!# @20#.

To incorporate the cage-diffusion process, i.e.,Dc(k;f)
into the theory, we need to go to a Fourier~i.e., k) represen-
tation, while the starting point of our theory, the two-partic
Smoluchowski equation@21#, is expressed in ordinary~i.e.,
r ) space. This will introduce a fundamental difficulty in th
development of the theory since the impenetrability of t
hard-sphere particles, which is easily accounted for inr
space, will be violated in our theory ink space, a point tha
will be discussed further below.

The paper is constructed as follows. In Sec. II we give
basic equation for the viscosity of the colloidal suspens
e
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and that for the nonequilibrium pair distribution function
the colloidal particles to obtain this viscosity from a solutio
of the latter equation. In Sec. III this solution is used
obtain an explicit expression for the viscoelastic behav
h(f,v) of the suspension. Section IV gives a simple fo
mula for the zero-frequency or Newtonian viscos
hN(f)5h(f,v50), while Sec. V contains the viscoelast
behavior of the fluid for finite frequencies. In Sec. VI th
approach ofh(f,v) to its asymptotic valueh`(f), via a
behavior;h0A(f)(vtP)

21/2, is discussed and exact resul
for the coefficientA(f) are compared with our theory an
with experiment. In Sec. VII the behavior ofh(f,v) for
smallv is given and Sec. VIII discusses a number of issu
raised by the results obtained in the paper, especially in c
nection with the good agreement with experiment, in spite
the apparent neglect of hydrodynamic interactions betw
the Brownian particles.

FIG. 1. ~a! Reduced cage-diffusion timetc(k;f)/tP as a func-
tion of k5ks for volume fractionsf 5 0.30 ~dotted line!, 0.45
~dashed line!, 0.50 ~solid line!, and 0.55~dash-dotted line!. For
k'k*'2p the two times are of the same order of magnitude.~b!
Reduced cage-diffusion coefficientDc(k;f)k

2s2/D0 as a function
of ks from light scattering experiments for a charged colloid (d)
(s5600 nm,f50.48 @56#!, a neutral colloid (h) (s5335 nm,
f50.49 @57#!, and from theory~solid line! @Eq. ~13!#. The two
minima correspond to the first two maxima ofSeq(k;f). Here the
diameter of the Debye sphere of the charged colloid is replaced
an effective hard-sphere diameter that is determined by makin
best fit of the experimental behavior ofSeq(k;f) of the charged
colloid neark* , with anSeq(k;f) of a corresponding hard-spher
fluid @19#. Also plotted is the reduced high-density self-diffusio
coefficient Ds(f)k

2s2/D05k2s2/x(f) @cf. Eq. ~45a!#, around
which the reduced cage diffusion coefficient oscillates and it
proaches fork→`.
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II. BASIC EQUATIONS

The shear viscosity we are concerned with in this pape
defined as the linear response of the suspension to an ap
shear rateg(t)5g0e

2 ivt with finite frequencyv and van-
ishing amplitudeg0 or, equivalently, by

Pxy~f,v,g0 ,t !52h~f,v,g0 ,t !g~ t !. ~1!

HerePxy is thexy component of the pressure tensor of t
suspension, defined by

Pxy~f,v,g0 ,t !5Pxy,s~f,g0 ,t !1Pxy,d~f,v,g0 ,t !, ~2!

wherePxy,s(f,g0 ,t) is the static contribution (v5`) to the
xy component of the pressure tensor, associated with
pure solvent contribution and the solvent-collo
contribution ~the stresslet contribution! @22,23#, and
Pxy,d(f,v,g0 ,t) is the dynamic contribution given b
@14,15#

Pxy,d~f,v,g0 ,t !52
1

2V K (
jÞ i51

N

r i j ,x
]V~r i j !

]r i ,y
L
ne

. ~3!

Here V is the volume of the system,r i is the position of
particle i ( i51, . . . ,N), r i j5r i2r j , V(r i j ) is the interpar-
ticle potential between particlesi and j at a distance
r i j5ur i j u, and the averagê &ne is taken with respect to a
nonequilibrium distribution function derived from th
N-particle Smoluchowski equation for a suspension un
shear rateg(t). Kinetic contributions to thexy component of
the pressure tensor can be neglected in the limitg050, as is
the case in this paper@23,24#.

The static contribution follows from the limitv→` when
the dynamic contribution to the pressure tensor beco
zero, leaving in Eq.~1! only

Pxy~f,v5`,g0 ,t !5Pxy,s~f,g0 ,t !52h`~f!g~ t !.
~4!

Carrying out the implied integration on the right-hand si
~rhs! of Eq. ~3! over the positions of allN22 particles but
particles 1 and 2, introducing center-of-mass and relative
ordinates byR5(r11r2)/2 andr5r12r2, respectively, and
carrying out the integration overR, one obtains for the dy-
namic contribution to the pressure tensor

Pxy,d~f,v,g0 ,t !52
n2

2 E dr g~r ;f,v,g0 ,t !x
]V~r !

]y
.

~5!

This gives, with Eqs.~2! and~4!, the expression for the tota
pressure tensor

Pxy~f,v,g0 ,t !52h`~f!g~ t !

2
n2

2 E dr g~r ;f,v,g0 ,t !x
]V~r !

]y
.

~6!

Here n2g(r ;f,v,g0 ,t) is the nonequilibrium pair distribu
tion function, giving the average number of colloidal partic
pairs at a separationr in the suspension at a number dens
is
lied

he

r

es

o-

n of the colloidal particles, so thatg(r ;f,v,g0 ,t) is the
nonequilibrium generalization of the radial distribution fun
tion geq(r ;f) in equilibrium, wheng050. Introducing then

g~r ;f,v,g0 ,t !5geq~r ;f!1dg~r ;f,v,g0!e
2 ivt, ~7a!

we have, forg0→0,

dg~r ;f,v,g0!5g0dg~r ;f,v!1O~g0
2! ~7b!

and one finds from Eq.~6! that in the limit of vanishing shea
rateg0→0, Pxy(f,v,g0 ,t) is proportional tog(t) since the
contribution ofgeq(r ;f) vanishes. Then, in Eq.~1!, the vis-
cosityh(f,v)5 limg0→0h(f,v,g0 ,t) is independent ofg0

and t and is given by

h~f,v!5h`~f!1
1

2
n2E dr dg~r ;f,v!x

]V~r !

]y
. ~8!

An approximate equation fordg(r ;f,v) can be obtained
in the following way. Neglecting the hydrodynamical inte
actions between the Brownian particles transmitted via
solvent, theN-particle Smoluchowski equation for this cas
in a shear fieldg(t) can be integrated over the positions
all N22 particles but the two particles 1 and 2. This leads
an equation for the nonequilibrium pair distribution functio
involving the nonequilibrium three-particle distribution fun
tion. Neglecting the latter, i.e., restricting ourselves to lo
densities, transforming to center-of-mass and relative coo
nates of the two particles 1 and 2, neglecting the depende
on the former, i.e., assuming spatial homogeneity and us
geq(r ;f)5exp@2bV(r)#, one obtains the following equatio
for g(r ;f,v,g0 ,t) to lowest order in the density:

F ]

]t
12bD0“•F~r !22D0¹

21g~ t !x
]

]yGg~r ;f,v,g0 ,t !

50. ~9!

HereF(r )52“V(r ) is the force on particle 1 at a separ
tion r from particle 2,b51/kBT, with kB Boltzmann’s con-
stant andT the absolute temperature. Equation~9! has been
considered for charged colloidal suspensions in the stat
ary state, i.e., forv50 by Dhontet al. @25#. With Eq. ~7!,
Eq. ~9! can be written as an equation fordg(r ;f,v),

@2 iv12bD0“•F~r !22D0¹
2#dg~r ;f,v!

52x
]

]y
e2bV~r !, ~10!

which has been solved exactly by Cichocki and Felder
@11# for hard-sphere particles~cf. Appendix A!.

From now on we shall explicitly use a hard-sphere pot
tial unless specified otherwise. Neglecting then the fo
term on the left-hand side~lhs! of Eq. ~10! and taking the
Fourier transform of Eq.~10! with respect tor , an equation is
obtained for

dS~k;f,v!5nE dr eik•rdg~r ;f,v!. ~11a!

Using that
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Seq~k;f!511nE dr eik•r@geq~r ;f!21# ~11b!

is the static structure factor in equilibrium in general, t
equation fordS(k;f,v) derived from Eq.~10! becomes, to
lowest order in the density,

@2 iv12D0k
2#dS~k;f,v!524f

kxky
k2

j 2~ks!, ~12!

where j 2(ks) is the spherical Bessel function of order
@26#.

As pointed out in the Introduction, the neglect of the for
term ~which is only justified forr.s) in taking the Fourier
transform of Eq.~10! is the source of an error in the theo
used in this paper to obtain the viscosityh(f,v). A more
detailed discussion of the nature of this error, its con
quences, and a way to partially correct for it can be found
Sec. VI and Appendix A.

Equation~12! is only valid for dilute suspensions wher
geq(r ;f)5exp@2bV(r)#, i.e., Seq(k;f)51224f j 1(ks)/ks
and the basic diffusion process of the two particles is f
diffusion, represented by the term 2D0k

2 on the lhs of Eq.
~12!. In order to obtain an equation for concentrated colloi
suspensions we make two corrections: a static one an
dynamic one. The first one replaces the low-density exp
sion forgeq(r ;f) used above by the fullgeq(r ;f) or, equiva-
lently, the rhs of Eq.~12! by ky]Seq(k;f)/]kx , where
Seq(k;f) is the full equilibrium static structure factor of Eq
~11b!. For the second correction we postulate that for su
suspensions the basic diffusion process is cage diffu
rather than free diffusion. An expression for the relaxat
time tc(k;f) for cage diffusion for concentrated colloida
suspensions has been derived before from the kinetic th
of a dense fluid of hard spheres, as the~scaled! reciprocal of
the lowest eigenvalueDc(k;f)k

2 of a linear generalized ki-
netic operator, discussed elsewhere@18–20,27#:

1

tc~k;f!
5Dc~k,f!k25

D0k
2

x~f!Seq~k;f!
d~k!. ~13!

HereDc(k;f) is the cage diffusion coefficient,Seq(k;f) is
again the equilibrium static structure, andd(k)5
1/@12 j 0(k)12 j 2(k)# is a combination of spherical Bess
functions j l(k) of order l50 and l52 @26#. We emphasize
thatd(k) is due to the collisional transfer between two ha
spheres at collision and plays an important role intc(k;f).
Dc(k;f) is plotted as a function ofk in Fig. 1~b!. Writing

1

tc~k;f!
5vH~k;f!, ~14!

the frequencyvH(k;f) is the half-width at half height of the
dynamical structure factorSeq(k;v) of the suspension in
equilibrium, which is the quantity that can be measured
light scattering experiments. The equality~14! is very well
supported by experiment@20# @cf. Fig. 1~b!#. Then Eq.~12!
becomes, with Eqs.~13! and ~14!,
-
n

e

l
a
s-

h
n
n

ry

n

@2 iv12vH~k;f!#dS~k;f,v!5ky
]

]kx
Seq~k;f!,

~15!

which has the solution

dS~k;f,v!5
kxky
k

Seq8 ~k;f!

2vH~k;f!2 iv
, ~16!

whereSeq8 (k;f)5dSeq(k;f)/dk.
We note thatSeq(k;f) has a very sharp maximum a

k;k*52p/s at high densities@20# indicating a quasiperi-
odic ordering of the colloidal particles on the length sca
s in cages. Equation~16! for dS(k;f,v) can be used to
computeh(f,v) with Eqs.~8! and~11!. This will be shown
in the next section.

III. GENERAL EXPRESSION FOR THE VISCOSITY

In order to use Eq.~16! for dS(k;f,v) to compute
h(f,v) we must Fourier transform Eq.~8!. For a hard-
sphere potential such a transformation is not possible. Th
fore, we replace in the spirit of the mean spherical appro
mation @28# V(r ) on the rhs of Eq.~8! by the equilibrium
hard-sphere direct correlation functionCeq(r ;f), i.e.,

V~r !→2kBTCeq~r ;f!. ~17!

As discussed in Sec. VI and Appendix A, this replacem
corrects partially for the neglect of the force term on the
of Eq. ~10!, which leads to unphysical contributions from
overlapping particle configurations. Fourier transformi
then Eq.~8! by using Parcival’s theorem on the rhs and th
the Fourier transformCeq(k;f) of Ceq(r ;f) is related to
Seq(k;f) by

nCeq~k;f!512
1

Seq~k;f!
, ~18!

one obtains straightforwardly from Eqs.~8! and~11! the ex-
pression

h~f,v!5h`~f!1
kBT

16p3E dk
kxky
k

Seq8 ~k;f!

Seq~k;f!2
dS~k;f,v!.

~19!

Substituting Eq.~16! into Eq.~19!, we obtain, after an angu
lar integration ink space,

h~f,v!5h`~f!1
kBT

60p2E
0

`

dk k4FSeq8 ~k;f!

Seq~k;f!
G2

3
1

2vH~k;f!2 iv
~20!

for the viscoelastic behavior of the suspension.
Insofar as the integrand in the second term on the rh

Eq. ~20! contains the eigenvalues@vH(k;f)# and amplitudes
@Seq8 (k;f)/Seq(k;f)# of two cage-diffusion modes, this term
can be called a mode-mode coupling contribution to the v
cosity. The difference with the usual mode-mode coupl
contributions is that here two cage-diffusion modes, wh
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describe the diffusion process in and out of two neighbor
particles’ cages, rather than two hydrodynamic modes~as
occur in the long-time tails or vortex diffusion@29#! are used.
We also note that the same expression~20! for h(f,v) can
be derived forv50, by a direct application of mode-mod
coupling theory to the Green-Kubo expression
h(f,v50) @30#. Since the complete derivation appears n
to be in the literature, we briefly sketch it in Appendix B. F
the concentrated suspensions we are mainly intereste
here, the most important contributions to the integral in E
~20! come from values ofk'k* .

We note that thek integral on the rhs of Eq.~20! is con-
vergent for allv, since the integrand vanishes fork→0 and
the asymptotic behavior fork→` is ;k22, as for largek:

Seq~k;f!51224fx~f!
j 1~ks!

ks
@11O~k22!#, ~21a!

Seq8 ~k;f!524fx~f!
j 2~ks!

k
@11O~k22!#, ~21b!

vH~k;f!5
D0

x~f!
k2@11O~k22!#. ~21c!

This implies that the second term on the rhs of Eq.~20!
vanishes forv→`, as it should, sinceh(f,`)[h`(f) by
definition.

We still have to obtainh`(f) in order to compute
h(f,v). One often writes forh`(f) @9,11,12#

h`~f!5h0@11 5
2f1O~f2!#, ~22a!

where the terms containingf are corrections to the pur
solvent viscosityh0, obtained by hydrodynamic interaction
~stresslet contribution! @22,23#. For concentrated solutions
we propose to set

h`~f!5h0x~f!, ~22b!

implying that the effective viscosity of the suspension at v
high frequencies is not only determined by the pure solv
viscosity but increased by the fraction of colloidal partic
pairs at contactx(f). Physically one could argue that the
touching, i.e., colliding, particles increase the effective v
cosity proportional to the number of such pairs present in
suspension because they increase the viscous dissipati
the suspension due to the instantaneous exchange of mo
tum during their collisions, no matter how short the tim
scale. They constitute therefore an instantaneous contribu
to h(f,v). Since@17#

x~f!511
5

2
f1O~f2!, ~23!

Eq. ~22b! reduces to the usual expression~22a! for h`(f) at
small concentrations and can therefore be considered
generalization of Eq.~22a! to high concentrations~see also
Sec. VIII!.

In Fig. 2 the behavior ofh`(f)/h05x(f) is compared
with the reduced viscosity measurements by van der W
et al. @5# and Zhuet al. @31# at very high frequencies forf
g

r
t

in
.

y
t

-
e
in
en-

on

a

ff

over the entire fluid range 0,f,0.55. Here we used the
Carnahan-Starling approximation@17#

x~f!5
120.5f

~12f!3
, ~24!

which is very accurate for all suchf. The agreement be
tween theory and experiment is good, thus confirming
~22b!. We note, however, that a theoretical justification
Eq. ~22b! is still lacking ~see Sec. VIII!.

We also included in Fig. 2 the values forh`(f) as ob-
tained by Cichocki and Felderhof@12#. These values differ
from those used by van der Werffet al. since they obtained
h`(f) by fitting the tails of the data for largev to
h`(f)1h0A(f)AvtP instead of using a fit for allv. We
used Cichocki and Felderhof’s values forh`(f) throughout
the paper~cf. Table II!.

We remark that Eq.~20!, with Eq. ~22b! and all the equa-
tions following from them, such as Eq.~25! in Sec. IV, con-
tains no adjustable parameters and is completely determ
by those characterizing the system: the viscosity of the
venth0, the volume fractionf ~or, equivalently, the numbe
densityn), and the diameters of the colloidal particles.

In Secs. IV and V we will compare the concentratio
dependence of Eq.~20! for the Newtonian viscosity

FIG. 2. Relative infinite frequency viscosityh`(f)/h0 as a
function of the volume fractionf. h, Zhu et al. @31#; 3, van der
Werff et al. @5#; d, Cichocki and Felderhof@12#, whose points
were obtained by an analysis of van der Werffet al. that is different
from that of the authors~cf. Table II!. The solid line corresponds to
Eq. ~24!.

TABLE II. Parameters discussed in the text.

f System t1(f)/tP h`(f)/h0 hN(f)/h0 A(f) f*

0.44 SSF 1 0.402 4.99 12.2 7.69 0.43
0.46 SP 23 0.421 5.13 13.1 8.33 0.43
0.47 SJ 18 0.776 6.78 17.8 8.45 0.45
0.48 SSF 1 0.372 6.36 17.3 12.1 0.45
0.51 SJ 18 0.665 7.45 28.8 17.7 0.49
0.52 SSF 1 0.834 7.47 32.7 18.6 0.50
0.54 SSF 1 0.912 9.9 50.7 28.8 0.53
0.57 SSF 1 3.70 11.5 139 44.7 0.59
0.58 SP 23 3.99 10.0 187 60.2
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hN(f)5h(f,v50) and the concentration and frequen
dependence ofh(f,v) of Eq. ~20! with the experimental
results of van der Werffet al. and others.

IV. NEWTONIAN VISCOSITY

Settingv50 in Eq. ~20! and using Eqs.~13!, ~14!, and
~22b!, we obtain the simple expression for the Newtoni
viscosity

hN~f!5h0x~f!F11
1

40pE0
`

dk k2
@Seq8 ~k;f!#2

Seq~k;f!d~k!G ,
~25!

wherek5ks and the Stokes-Einstein relation

D05
kBT

3ph0s
~26!

has been used. We note that for smallf, i.e., toO(f2), the
second term on the rhs of Eq.~25! reduces to an expressio
obtained by Blawzdziewicz and Szamel@13# for g050.

Although the expression~25! for hN(f) has been derived
for large f(0.3,f,0.55), where cage diffusion is th
dominant finite-time contribution to the viscosity@via Eqs.
~13! and~14!#, Eq. ~25! nevertheless appears to describe
f dependence ofhN(f) for small and intermediate concen
trations also, due to the presence of theh0x(f) term ~cf.
Fig. 3!. Figure 3 also shows that the cage diffusion descri
the very rapid increase ofhN(f) with f for
0.40,f,0.55 very well.

Equation~25! has been evaluated using the Henders
Grundke correction@32# to the Percus-Yevick equation fo
the computation of the hard sphereSeq(k;f) andSeq8 (k;f).
A convenient Pade´ approximation ofhN(f) for practical use
for all 0,f,0.55 is

hN~f!5h0x~f!F11
1.44f2x~f!2

120.1241f110.46f2G ~27!

FIG. 3. Relative Newtonian viscosityhN(f)/h0 as a function of
the volume fractionf. 3, van der Werff and de Kruif@6#; n, van
der Werffet al. @5# ~cf. Table II!; d, Joneset al. @49#; h, Papir and
Krieger @50#. The solid line corresponds to Eq.~25! and the dashed
line to h`(f)/h05x(f) @Eq. ~24!#.
e

s

-

within a relative accuracy of less than 0.25%. This appro
mation yields forhN(f) the correct Einstein coefficient52f
as well as the same coefficient ofO(f2) as Eq.~25!.

Cichocki and Felderhof have obtained, on the basis of
pair Smoluchowski equation, exact results forh(f,v) to
O(f2). Their result toO(f2) for hN(f) is, without Brown-
ian motion contributions@33#,

hN~f!511
5

2
f15.00f2, ~28a!

while with Brownian motion contributions they find@34#

hN~f!511
5

2
f15.91f2. ~28b!

This can be compared with the approximate result we ob
from Eq. ~25!,

hN~f!511
5

2
f16.03f2, ~28c!

where the term 6.03f2 contains a contribution 4.59f2 from
h`(f) and a contribution 1.44f2 from the second~mode-
mode coupling! term in the large square brackets on the r
of Eq. ~25!. Since forf,0.25 the cage-diffusion contribu
tion to h(f;v) can be neglected, Eq.~22b! then reduces to
hN(f)5h`(f)5h0x(f). Equations~28b! and ~28c! both
give then a good representation of the experimental va
for hN(f).

V. VISCOELASTIC BEHAVIOR

For vÞ0, h(f,v) of Eq. ~20! is complex, so that the
viscoelastic behavior of the suspension can be written in
form

h~f,v!5h8~f,v!1 ih9~f,v!, ~29!

where h8(f,v) and h9(f,v) are the real and imaginar
parts ofh(f,v), respectively. It is convenient and custom
ary @5# to consider instead ofh8(f,v) and h9(f,v) re-
duced quantities defined by

hR* ~f,v!5
h8~f,v!2h~f,`!

h~f,0!2h~f,`!
5

h8~f,v!2h`~f!

hN~f!2h`~f!
~30a!

and

h I* ~f,v!5
h9~f,v!

hN~f!2h`~f!
, ~30b!

where the reduced real parthR* (f,v) varies as a function of
v between 1~for v→0) and 0~for v→`) for all f and
h I* (f,v) vanishes forv→0 andv→`, exhibiting a maxi-
mum in between. In Fig. 4,hR* (f,v) and h I* (f,v) are
compared with the experimental data of van der Werffet al.
as a function of a reducedv for all available f for
0.44<f<0.57 @5#. As van der Werffet al. state, the values
they find for the reduced quantitieshR* (f,v) and
h I* (f,v) are very weakly dependent onf, which is consis-
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55 3149VISCOSITY OF COLLOIDAL SUSPENSIONS
tent with the crowding of all experimental points around t
theoretical curves, inside the experimental errors. The s
ing of v for the experimental data was performed in t
same way as was done by van der Werffet al. by fitting the
data for largev by the expression~cf. Sec. VI!

hR* ~f,v!5h I* ~f,v!5
3A2
2p

1

Avt1~f!
, ~31!

where t1(f) is a phenomenological time for the expe
ments. Thet1(f) used for the theoretical results is given
Sec. VI, Eq.~33!.

Nevertheless, a more detailed comparison ofhR,I* (f,v)
as a function off can be made, although the large expe
mental uncertainties of the data and the difference in
basic inputs in the theory (f and h0) and experiment
(s, c, andh0, with c the weight concentration of the co
loidal particles! complicate considerably a compelling d
tailed comparison of theory and experiment. Examples
given in Fig. 5. In the same figure the results of a gene
phenomenological description of the viscoelastic behavio
colloidal suspensions due to Cichocki and Felderhof
given@12#. This description is based on a three-pole appro

FIG. 4. ~a! Real and~b! imaginary parts of the reduced viscos
ties hR* (f,v) and h I* (f,v), respectively as a function o
vt1(f). Experimental points are from van der Werffet al. @5#: %

for f 5 0.44,s for f 5 0.46,h for f 5 0.47,h for f 5 0.48,
, for f 5 0.51,! for f 5 0.52,3 for f 5 0.54, andn for f 5
0.57. Theory is from Eqs.~20!, ~25!, and ~30!. Dashed line,
f50.55; solid line,f50.50; dotted line,f 5 0.45. The cloud of
points in~b! nearvt1(f)51 should be discarded since they do n
satisfy the Kramers-Kronig relation@12#.
l-

-
e

re
l
f
e
i-

mation in the complexAv plane, whose location is derive
from the experimentally measured valueshN

expt(f),h`
expt(f)

and three additional parameters, one of them being a re
ation time. From these three poles theh8(f,v) and
h9(f,v) as a function ofv can be derived. For the thre
concentrationsf50.44, 0.46, and 0.53, for which their pro
cedure could be implemented,h8(f,v) and h9(f,v) are
consistent with our results within the experimental errors.
was shown by Cichocki and Felderhof, the strongly deviat
cloud of points nearvt1(f)'1 in the imaginary part of the
reduced viscosityh I* (f,v) @cf. Fig. 4~b!# can be disgarded
since they violate the Kramers-Kronig relations between
real and the imaginary part ofh(f,v) and must therefore be
erroneous@12#.

VI. LARGE- v BEHAVIOR

For largev, Eq. ~20! for h(f,v) can be written as

h~f,v!5h`~f!1
9

5
f2x5/2h0

1

AvtP
~11 i !1OS 1v D ,

~32!

where the square-root singularity forv→` is induced by the
large-k behavior of the integrand on the rhs of Eq.~20!, as
given by Eq.~21!. We note that the correctionO(1/v) is an
exact result for low concentrations toO(f2) ~cf. Appendix
A! and is consistent with what is found in the mode-mo
coupling approximation.

Using Eq.~32! in Eq. ~30! and comparing with Eq.~31!
gives, fort1(f) the theoretical expression,

t1~f!5
25

18p2f4x~f!5 FhN~f!

h0
2x~f!G2tP , ~33!

which is plotted in Fig. 6 and is consistent with the expe
mentally usedt1(f) up to aboutf'0.55, averaging at a
value of abouttP/4 ~cf. Sec. IV B in Ref.@5#!. The system-
atically too low theoretical value oft1(f) corresponds to the
systematically too high theoretical value of the coefficient
the v21/2 singularity in Eq.~32! as compared to the exac
value given in Eq.~41! below.

In fact, in order to investigate this behavior further,
independent evaluation ofh(f,v) for large v was made,
starting from a Green-Kubo-like formula forh(f,v) rather
than from Eq.~8!:

h~f,v!5h`~f!1
b

VE0
`

dt rh~ t;f!eivt. ~34!

Here the stress-stress autocorrelation functionrh(t) is de-
fined by

rh~ t;f!5^Sxy
h eVtSxy

h &eq, ~35!

where the angular brackets denote an equilibrium ensem
average. Here, instead of using the microscopic pressure
sor ~the expression in the angular brackets of Eq.~3! in Sec.
II !, we use in this context the more customary microsco
stress tensorSxy

h , which is equal but opposite in sign and ca
be written as
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FIG. 5. Relative real and imaginary parts o
the viscoelastic viscosity, respectively
h8(f,v)/h0 (s) and h9(f,v)/h0 (3), as a
function ofvt1(f), for eight suspensions studie
experimentally by van der Werffet al. @5# from
f50.44 up tof50.57 ~cf. Table II!. In order to
make a fair and realistic comparison of the theo
with experiment, keeping in mind the 4% unce
tainty in the determination off @58# and the ex-
treme sensitivity of the denominator o
hR,I* (f,v), as already pointed out by van de
Werff et al. @5#, we assign to the experimenta
data an effective volume fractionf* such that
hN
theor(f* ) 2h`

theor(f* ) [ hN
expt(f) 2 h`

expt(f) ,
within the experimental uncertainty off. Dotted
line, phenomenological results by Cichocki an
Felderhof @12# ~only available forf 5 0.46,
0.54, and 0.57!; solid line, theory from Eqs.~20!
and ~29! usingf5f* ~cf. Table II!.
N

r

-
r-
be
l
-

cies
Sxy
h 5(

i51
r i ,xFi ,y , ~36!

with Fi52“ iF(r N) the force on particle i
(“ i5]/]r i), F(r N)5( i, j51

N V(r i j ) the total potential en-
ergy of the colloidal particles, and

V5Ds(
i51

N

@“ i1bFi #•“ i ~37!

the N-particle Smoluchowski operator@21,35# with D0 re-
placed by the short-time self-diffusion coefficientDs(f) to
make Eq.~34! applicable to all fluid densities. This is furthe
discussed below. ForN52 andx(f)51 the adjoint opera-
tor occurs in the pair Smoluchowski equation@Eq. ~9!#.

The short-time behavior ofrh(t;f) determines the large
v behavior ofh(f,v). Since for hard spheres the interpa
ticle potential is singular, one determines the short-time
havior of rh(t;f) by first using a soft potentia
Vl(r )5e(s/r ) l , wheree is the two-particle interaction en
-

FIG. 6. Ratio of t1(f) and tP as a function of the volume
fraction f. Experimental points are from van der Werffet al. @5#
~cf. Table II!. Dashed line, theory from Eq.~33!; solid line, theory
using Eq.~41! instead of Eq.~32! in Eq. ~30! in order to get the
correct coefficient of the square-root singularity at large frequen
~cf. Sec. VI and Fig. 7!.
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55 3151VISCOSITY OF COLLOIDAL SUSPENSIONS
ergy for r5s, and then lettingl→`, so thatVl(r ) ap-
proaches a potential between two hard spheres of diam
s. For l→`, one can then derive forrh(t,f) the expression
@36#

rh~ t;f!5
2pn2Vs3x~f!l

15b2 r ~ t* !, ~38a!

with

r ~ t* !5E
0

`

ds e2sexpH t* F S s2 ]

]s
1s2s2D ]

]sG J s,
~38b!

where

t*5
2Dstl

2

s2 . ~38c!

The leading term of r (t* ) for limt→0lim l→`, i.e.,
t*;t l 2→`, which determines the short time behavior
rh(t;f) for a hard-sphere potential, reads@36#

r ~ t* !5
1

Apt*
. ~39!

Using Eqs.~34!, ~38!, and~39! and the Stokes-Einstein rela
tion ~26!, one obtains forh(f,v) for large v and for a
hard-sphere potential for allf the exact expression

h~f,v!;h`~f!1
18

5
f2x~f!h0F D0

Ds~f!G
1/2 11 i

AvtP
.

~40!

Using then thatDs(f)5D0 /x(f) ~cf. Sec. VIII! one has

h~f,v!;h`~f!1
18

5
f2x~f!3/2h0

1

AvtP
~11 i !.

~41!

Equations~32! and ~41! are both compared with the exper
mental data for largev and for most experimental values o
f in Fig. 7. We emphasize that in order to get agreem
with experiment it is necessary to replace the low-den
Stokes-Einstein diffusion coefficientD0 by the self-diffusion
coefficentDs(f) in the basic Smoluchowski operator@cf.
Eq. ~37! and Fig. 7# @36#. We also emphasize that the exa
result of Eq.~41! constitutes a generalization of Cichoc
and Felderhof’s low-concentration result to all concent
tions in the fluid range. A detailed derivation of Eq.~41! will
be given elsewhere@36#.

It is clear that the experiments agree very well with E
~41! and not with Eq.~32!, consistent with the systematicall
lower theoretical values oft1(f) in Fig. 6. This could well
be related to the approximations made to obtain Eq.~32!: ~i!
the use of the completeSeq(k;f) ~i.e. for all f) in the two-
particle equation~15! and the use ofvH(k;f) as the only
basic relaxation time,~ii ! the replacement of the potentia
V(r ) in Eq. ~8! by the direct correlation functionCeq(r ;f),
and ~iii ! the neglect of the force term on the lhs of Eq.~10!
and consequenly the correct boundary condition of ha
ter

t
y

t

-

.

-

sphere impenetrability incurred by the Fourier transfo
from Eq. ~10! to Eq. ~12! ~cf. Appendix A!. The first ap-
proximation was intended to incorporate the calculation
h(f,v) contributions due to more than two isolated pa
ticles, i.e., correcting for the neglect of the three-particle d
tribution function in the equation~9! for g(r ;f,v,g0 ,t).

As pointed out before, the second approximation is n
essary to perform a Fourier transform of Eq.~8!. It also cor-
rects partly for the unphysical contributions from overla
ping particle configurations due to the neglect of the pro
hard-sphere boundary condition~cf. Appendix A!. We re-
mark that the Fourier transform of Eq.~8! was due to the
necessity of introducing the relaxation timestc(k;f) related
to the cage diffusion for concentrated colloidal suspensio
which have only been determined for periodic particle
rangements, characterized by a wave numberk. However,
neither of these two approximations seems to be respons
for the incorrect asymptoticv behavior ofh(f,v).

As for the third approximation, if we compare Eq.~32! for
low densities, i.e.,x(f)51, with the exact solution for
h(f,v) obtained by Cichocki and Felderhof@11# to
O(f2), we see that the second term on the rhs of Eq.~32! is
smaller by a factor 2. Cichocki and Felderhof considered
~10! with the correct hard-sphere boundary condition inr
space and solved it exactly. If we solve Eq.~10! in the same
manner but neglect the force term on the lhs~cf. Appendix
A!, we obtain, however, Eq.~32! in the limit of largev with
x(f)51. This suggests that the third approximation, the
glect of the force term on the lhs of Eq.~10!, and the ensuing
violation of the proper hard-sphere boundary condition
real space in making the Fourier transform from Eq.~10! to
Eq. ~12! are the main reason for the erroneous express
~32!.

We note that Eqs.~32! and ~41! show that the difference
between the exact and the mode coupling result for the
efficient ofv21/2 is a constant factor 2/x(f). This only af-
fects the approach tov5`, not h`(f) itself, and is of no
influence if one plots the mode coupling theory on the p
nomenological time scalevt1(f) using Eq.~33! ~cf. Fig. 5!.
This may be of practical importance for predicting the v

FIG. 7. Coefficient of the square-root singularity at large fr
quenciesA(f) as a function of the volume fractionf. Experimen-
tal points are from van der Werffet al. @5# ~cf. Table II!. Dashed
line, mode-mode coupling theory@Eq. ~32!#; solid line, exact result
starting from the Green-Kubo relation@Eq. ~41!#; dotted line, the
theoretical result withDs(f)5D0 @cf. Sec. VI, Eq.~40!#.
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coelastic behavior of concentrated colloidal suspensi
since the scaling in time does not affect the Newtonian
havior of the viscosity@37#.

VII. SMALL- v BEHAVIOR

For low densities toO(f2) the small-v behavior of
h(f,v) follows from Eqs.~20!, ~21!, and~29! to be

h8~f,v!2h`~f!

h0
5H 36

25
2
32

175
~vtP!2J f21•••,

~42a!

h9~f,v!

h0
5

48

175
~vtP!f21•••. ~42b!

This can be compared with the exact results of Cichocki
Felderhof@11# to O(f2) for v→0:

h8~f,v!2h`~f!

h0
5H 125 2

16

81
~vtP!2J f21•••,

~43a!

h9~f,v!

h0
5

8

15
f2~vtP!1•••. ~43b!

The agreement of Eqs.~42a! and ~42b! with Eqs.~43a! and
~43b! for smallv and low concentrations, in particular of th
coefficient of (vtP)

2 in the real parts, is better than that
Eqs. ~32! and ~41! for largev. This is probably due to the
fact that the neglect of the proper hard-sphere boundary
dition in the mode-mode coupling theory is more serious
a description of the short-time behavior than the long-ti
behavior of the suspension. We remark, however, that
difference in the first terms on the rhs of Eqs.~42a! and
~43a!, i.e., 36/25 and 12/5, respectively, is a direct con
quence of the violation of the proper hard-sphere bound
condition @cf. Appendix A, in particular Eq.~A25!#.

VIII. DISCUSSION AND CONCLUSIONS

Thev dependence ofh(f,v) is well represented by Eq
~20! for all f on the phenomenological time scalet1(f) or
if plotted as a function ofvtP , when an overall shift to the
theoretical curves of 2/x(f) is applied@37#. The latter is due
to the fact that the asymptotic mode-mode coupling re
~32! for the large-v behavior ofh(f,v) is not correct be-
cause of the incomplete incorporation of the hard-sphere
penetrability in the theory. The mode-mode coupling con
bution to h(f,v) should be best for values ofv around
vt1(f)'1, where there are rather few experimental poin
It would be interesting therefore if a more detailed compa
son between theory and experiment could be made in
v regime to obtain a more appropriate test for the validity
the mode-mode coupling theory used here.

The result~20! for h(f,v) is based exclusively on th
instantaneous time behavior ofh`(f) and the cage-diffusion
relaxation mechanism. From the agreement ofh(f,v) and
hN(f) with experiment, it would seem that these two phy
cal processes essentially suffice to understand the Newto
as well as the viscoelastic behavior in the entire fluid ran
of hard-sphere colloidal suspensions. That this agreemen
s
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curs without considering explicitly any hydrodynamical i
teractions between the colloidal particles in the theory p
sented here may appear rather puzzling. We do not hav
explanation for this, other than that at high concentratio
where 0.3,f,0.55, the surface to surface distance betwe
the hard spheres is so small that a ‘‘quenching’’ of hydrod
namical effects is not unthinkable.

There may, however, be a deeper justification for the
glect of the usual hydrodynamical interactions in our theo
It seems that in a number of cases the same concentra
dependence of a physical quantity of the suspension ca
obtained by theories with and without hydrodynamical int
actions between the Brownian particles. In this respect
following two observations are relevant.

~i! The concentration dependence of the infinite freque
viscosity h`(f) as well as of the Newtonian viscosit
hN(f) for low and intermediate concentration
0<f<0.25 is described by our relations@cf. Eqs.~22b! and
~25!#

h`~f!5h0x~f!

5h0@11 5
2f14.59f21O~f3!# ~44a!

and

hN~f!5h0x~f!F11
1

40pE0
`

dk k2
@Seq8 ~k;f!#2

Seq~k;f!d~k!G
5h0@11 5

2f16.03f21O~f3!#, ~44b!

respectively. The rhs of Eqs.~44a! and ~44b! can be com-
pared with Beenakker’s expression@38#

heff~f!5 lim
k→0

@h~k;f!#

5h0@11 5
2f14.84f21O~f3!# ~44c!

for what he calls the effective viscosity. Beenakke
heff(f) is derived from a wave-vector-dependent viscos
h(k;f), a complicated function ofk, by using the quasistatic
Stokes equation to describe the motion of the fluid, negle
ing inertial effects. This implies, as he points out, that h
equation is valid fortB,t,tP . Our relations~44a! and
~44b!, however, are valid fort,tB and t.tP , respectively.
Thus his result@Eq. ~44c!# can be regarded as between Eq
~44a! and~44b! @cf. Fig. 8~a!#. While for low concentrations
the difference between the three expressions@as well as Eqs.
~28a! and ~28b!# is marginal since it does not appear to
relevant for comparison with experiment, we emphasize t
the strong experimental increase of the Newtonian visco
for higher concentrationsf.0.3 can only be described b
the integral on the rhs of Eq.~44b! @cf. Figs. 2 and 8~a!#.

~ii ! Also, the concentration dependence of the short-ti
self-diffusion coefficientDs(f) for low and intermediate
concentrations 0<f<0.45 can be equally well described
within the experimental uncertainties, by our relation

Ds~f!5
D0

x~f!
~45a!

as by the Beenakker and Mazur expression@39#
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55 3153VISCOSITY OF COLLOIDAL SUSPENSIONS
Ds~f!5 lim
k→`

D~k;f!, ~45b!

whereD(k;f) is a wave-vector-dependent collective diff
sion coefficient, which is, likeh(k;f), a complicated func-
tion of k. While our relation~45a! for Ds(f) is valid for
t,tB , Beenakker and Mazur’s expression~45b! is, like their

FIG. 8. ~a! Inverse relative infinite frequency viscosit
h0 /h`(f) @d, experimental points from van der Werffet al. @5#;
dashed line, theory from Eq.~24!# and inverse relative Newtonia
viscosityh0 /hN(f) @3, experimental points from van der Wer
et al. @5,6#; solid line, theory from Eq.~25!# as a function of the
volume fractionf. Dotted line, Beenakker’s expression~44c! @38#
@cf. Sec. VIII, observation~i!#. ~b! Relative short-time self-diffusion
coefficientDs(f)/D0 as a function of the volume fractionf. h,
Zhuet al. @31#; 3, van Megenet al. @40#; d, Pusey and van Megen
@41#. The solid line corresponds to Eq.~45a! and the dashed line to
the Beenakker and Mazur expression~45b! @39#. ~c! Inverse relative
infinite frequency viscosityh0 /h`(f) (d, Zhuet al. @31#; j, van
der Werff et al. @5#! and relative short-time self-diffusion coeffi
cientDs(f)/D0 (s, Zhuet al. @31#; h, van Megenet al. @40# as a
function of the volume fractionf. Solid line, theory from Eq.
~47b!; dotted line, Beenakker@38#; dashed line, Beenakker and Ma
zur @39#.
viscosity, valid for tB,t,tP . On this larger time scale
Ds(f) will contain extra, in their case hydrodynamic, co
tributions in addition to our instantaneous contribution
leading to slightly larger values for the short-time se
diffusion coefficient. The same obtains for the experime
of van Megenet al. @40# and Pusey and van Megen@41# @cf.
Fig. 8~b!#.

Beenakker and Mazur consider only purely hydrodynam
interactions between the particles in that they study the
drodynamical effect of a number of stationary particles
the motion of one moving particle. In our case no hydrod
namics enters explicitly at all; essentially only molecu
considerations are used. For short times the~static! equilib-
rium radial distribution at contactx(f), derived from the
canonical distribution of the colloidal particles in equilib
rium, occurs, yet a comparable agreement with experimen
obtained. It appears therefore that ourx(f) replaces effec-
tively the hydrodynamic interactions considered elsewhe
For long times there is an extra~dynamic! contribution due
to the increasing difficulty for a particle to diffuse out of th
cage formed by its neighbors.

We believe that for a complex system such as a colloi
suspension there could be apparently very different altern
descriptions of the same phenomena. Perhaps the sim
and most striking example of this is the observation t
Einstein’s low concentration result for the viscosity of a co
loidal suspension, derived from Stokes hydrodynamics@42#

h`~f!

h0
511

5

2
f1O~f2!, ~46a!

can also be obtained, using an Einstein relation@cf. Eqs.
~44a! and ~45a!#

h`~f!

h0
5

D0

Ds~f!
511

5

2
f1O~f2!. ~46b!

Although these equivalent alternate descriptions of colloi
suspension properties, and especially Eq.~46b!, could well
be a fluke, a deeper origin cannot be ruled out in our opin
either.

In fact, for the equivalence of Einstein’s expression~46a!
and our~46b! the following physical argument can be give
Felderhof has shown@43#, and it also follows from the
Green-Kubo expression ~34!, that h(f,v)5h0@11
5
2f1h2(v)f

2]. Therefore, the first two terms in the expa
sion ofh(f,v) in powers off are independent ofv. This
implies that when computed for anyv they should give the
same answer:h0@11 5

2f]. Einstein, as represented in Landa
and Lifshitz@44#, did the computation forv50, i.e., he used
a long-time stationary state hydrodynamic calculation to
tain the extra resistance of the suspension to shear from
change of the velocity field of the fluid due to a single Stok
sian hard-sphere particle placed in it.

We propose to do a computation atv5`, i.e., for a very
short ~in fact, instantaneous! time. Then the placing of one
particle, or even many mutually separated particles, in
solvent will not have any effect on the viscous resistance
the suspension. The only way the presence of the parti
can produce an extra flow resistance is from pairs of partic
~already! in contact, where an ‘‘instantaneous’’ collisio
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takes place adding to the viscous dissipation in the sus
sion. Therefore, forv5` the increase in the effective flui
viscosity as a function off will be given by the relative
increase in the number of particle pairs at contact in equi
rium as a function off, which isx(f). On the basis of this
argument one would conjecture that forv5`, the increase
in suspension viscosity, when compared to that of the p
solvent, would bex(f) for all f, not just 11 5

2f to O(f).
This conjecture is consistent with experiment~as shown in
Fig. 2! and should be derivable from kinetic theory@45#.

We also remark that the Einstein relation

D05
kBT

3ph0s
~47a!

appears to hold not only for infinitely dilute suspensions,
for all concentrations in the form@4#

Ds~f!5
D0

x~f!
5

kBT

3ph`~f!s
, ~47b!

as can be seen in Fig. 8~c!. The physical reason for thi
seems to be that as long as the times of observation
sufficiently short~or the frequencies sufficiently high!, so
that no significant motion of the colloidal particles can ta
place, no hydrodynamical effects will occur and only t
instantaneous effects due to particles at contact, which d
not require any time to occur, i.e.,x(f), will be relevant.
Therefore, in considering Fig. 8~c! one should bear in mind
that most measurements are not made atv50 ~or, equiva-
lently, for very short times!, when 1/x(f) obtains, and also
that there are considerable experimental uncertainties, as
be seen by the spread of the data at the samef.

Recently Brady@10# has published a different model fo
the Newtonian as well as the frequency-dependent visco
His results can be obtained from the low-density result
Cichocki and Felderhof@11# ~cf. Appendix A! with only two
modifications:~i! a scaling of their exact solution@Eqs.~A2!
and ~A6!# for the low-density two-particle Smoluchowsk
equation~10! @Eq. ~A1!# by replacing the Stokes-Einstei
diffusion coefficientD0 by the short-time self-diffusion co
efficient Ds(f) and ~ii ! the addition of a factor
geq(r5s;f)5x(f) to the low-density expression for th
potential contribution of the viscosity in terms of the pa
distribution function@cf. the second term on the rhs of E
~8!#. This leads directly to Brady’s expression forh(f,v)
@cf. Eqs.~A11! and ~A12!#, which in our notation reads

h~f,v!5h`~f!1h0f
2aV~v!geq~s;f!

D0

Ds~f!
~48!

and reduces forv50 @with Eq. ~A12!# to his expression for
the Newtonian viscosityhN(f),

hN~f!5h`~f!1
12

5
h0f

2geq~s;f!
D0

Ds~f!
. ~49!

However, in his calculations Brady determines the three
sic ingredients of his theory empirically:h`(f) is derived
from measurements and Stokesian dynamics@46,47#, while
geq(s;f) is taken to be given by the Carnahan-Starling a
proximation~24! for 0,f,0.5 and by 1.2(12f/fm)

21 for
n-

-

re

t

re

es

an

ty.
f

a-

-

f.0.5 @10#, wherefm50.63 is the volume fraction of ran
dom close packing of hard spheres. Furthermore, the rela
short-time self-diffusion coefficientDs(f)/D0 is taken from
Ladd’s computer simulations for 0,f,0.45 @47# and from
Phung’s Stokesian dynamics simulations forf.0.45 @48#.
This leads to a curve forhN(f), as given by Eq.~49!, that is
virtually indistinguishable from ourhN(f) based on Eq.~25!
for 0,f,0.55. We remark that Eq.~49!, with the just-
mentioned determination ofh`(f), geq(s;f), and
Ds(f)/D0, also describes very well the experimental da
for hN(f) @5,6,49,50# for 0.55,f,0.60, where the precise
thermodynamic state of the suspension is not clear, while
~25! gives then too low values forhN(f). Virtually the same
result as Brady’s description ofhN(f) for 0,f,0.60 can
be obtained by using in his Eq.~49! for all f our Eqs.~22b!
and~45a! for h`(f) andDs(f)/D0, respectively, as well as
his representation ofgeq(s;f). It is clear that the precipitous
increase ofhN(f) for f.0.55 is then a direct consequenc
of the pole ingeq(s;f) at f5fm .

However, for the viscoelastic behavior, when plotted a
function ofvt1(f), Brady’s results do not agree well wit
the experiments of van der Werffet al. @10,51#. This may
well be related to the fact that the basic ingredient of Brad
theory that causes the increase ofhN(f) for large f is a
static one, related to the behavior ofgeq(s;f);
(12f/fm)

21 as random close packing is approached, wh
in our theory it is a dynamic one: the increasing difficulty
diffusion of a particle out of the cage formed by its neig
bors. It appears that only the latter one is able to account
the frequency behavior ofh(f;v). The underlying physics
of the two processes is therefore very different: while we u
the typical high-density mechanism of cage diffusion, Bra
upgrades the low-density physics by effectively scaling w
geq(s;f) andDs(f).

Very recently Liuet al. @52,53# have succesfully adapte
the Newtonian viscosity equation~25! to charged and neutra
micelles. This indicates that the physics contained in Eq.~25!
is applicable to a wider class of suspensions than consid
in this paper. Finally, we note that essentially the sa
mode-mode coupling term as in Eq.~25! gives the steep
viscosity rise at high densities for atomic liquids since t
atoms, like the colloidal particles, find themselves in cag
out of which they can only escape with increasing difficu
with increasing density@29,30#.
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APPENDIX A

Here we compare for low densitiesf→0 and hard
spheres the exact dynamic viscosityh(f,v) as obtained
from Eqs.~8! and~10! by Cichocki and Felderhof@11# with
the mode-mode coupling approximationhMC(f,v) given by
Eq. ~20!. We first give the exact solution of Eq.~10! for
dg(r ;f,v) as obtained by Cichocki and Felderhof. F
f→0, geq(r ;f)5exp@2bV(r )#, so that Eq.~10! reads
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@2 iv12D0“•$bF~r !2“%#dg~r ;f,v!

5b
xy

r
V8~r !e2bV~r !, ~A1!

with V8(r )5]V(r )/]r . The solution of Eq.~A1! can be writ-
ten as

dg~r ;f,v!5
xy

r 2
f S rs ;v De2bV~r !. ~A2!

Substitution of Eq.~A2! into Eq. ~A1! and using that

$bF~r !2“%e2bV~r !50, ~A3!

one obtains in the hard-sphere limitV(r )5 lim l→`Vl(r )
5 lim l→`e(r /s) l the following equation forf (u;v), with
u5r /s:

F ]

]u
u2

]

]u
261

ivs2

2D0
u2G f ~u;v!50, ~A4!

with the boundary condition

f 8~1;v!5
s2

2D0
, ~A5!

where f 8(u;v)5] f (u;v)/]u. This boundary condition en
sures that the rhs of Eq.~A1!, which diverges atr5s for
hard spheres, cancels exactly a similar divergent term ari
from F(r ) on the lhs. The solution of Eq.~A4! with Eq. ~A5!
is, for r>s (u>1),

f ~u;v!5
s2

2D0

k2~au!

ak28~a!
, ~A6!

with k2(x) the modified spherical Bessel function@26# of the
third kind,

k2~x!5e2x$x2113x2213x23%, ~A7!

and

a5a~v!5~12 i !Avs2

4D0
. ~A8!

We note that for hard spheresf (r /s;v) is continuous at
r5s so thatdg(r ;f,v) in Eq. ~A2! shows a jump atr5s
due to the factor exp@2bV(r )#5Q(r2s) with Q(x) the
Heaviside step function. In particular,dg(r ;f,v)50 for
r,s, reflecting the inpenetrability of two hard spheres. Ne
we substitute~A2! for dg(r ;f,v) in Eq. ~8! for h(f;v).
Using that for hard spheres

V8~r !e2bV~r !52kBTd~r2s!, ~A9!

one obtains straightforwardly

h~f;v!5h`~f!2
2p

15
kBTn

2s3f ~1;v!. ~A10!

Substitution of Eqs.~A6! and ~A7! leads to the final resul
for f→0,
ng

t

h~f;v!5h`~f!1h0f
2aV~v! ~A11!

with

aV~v!5
36

5

a213a13

a314a219a19
~A12!

anda5a(v) given by Eq.~A8!.
In the mode-mode coupling theory, on the other hand,

neglects the forceF(r ) on the lhs of Eq.~A1!, so that
dgMC(r ;f,v) satifies

@2 iv22D0¹
2#dgMC~r ;f,v!5b

xy

r
V8~r !e2bV~r !.

~A13!

The solution of this equation can be written in the form

dgMC ~r ;f,v!5
xy

r 2
fMCS rs ;v D . ~A14!

Substitution of Eq.~A14! into Eq.~A13! yields the following
equation forfMC(u;v):

F ]

]u
u2

]

]u
261

ivs2

2D0
u2G fMC~u;v!50, ~A15!

with boundary condition (e→0)

fMC8 ~11e;v!2 fMC8 ~12e;v!5
s2

2D0
, ~A16!

which follows from the rhs of Eq.~A13! in the hard-sphere
limit, using Eq.~A9!. Thus fMC(r /s;v) is continuous for all
r with a jump in its derivative atr5s given by Eq.~A16!.
The solution of Eqs.~A15! and ~A16! is, for u<1,

fMC~u;v!5
s2

2D0

2K~a!

11K~a!

i 2~au!

a i 28~a!
~A17!

and foru>1,

fMC~u;v!5
s2

2D0

1

11K~a!

k2~au!

ak28~a!
, ~A18!

wherea5a(v) is defined in Eq.~A8!, k2(x) in Eq. ~A7!,
i 2(x) is the modified spherical Bessel function of the seco
kind @26#,

i 2~x!5S 3x3 1
1

xD sinhx2
3

x2
coshx, ~A19!

and

K~a!52
k2~a!i 28~a!

k28~a!i 2~a!
. ~A20!

ThusdgMC(r ;f,v) given by Eqs.~A14!, ~A17!, and ~A18!
is continuous for allr and nonvanishing forr,s, allowing
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two spheres to overlap. To exclude such unphysical confi
rations in Eq. ~8! for the viscosity h(f,v) we replace
V(r ) by 2kBTCeq(r ;f) @Eq. ~17!#. Using thatCeq(r ;f)
5exp@2bV(r )#21 for f→0, ]V(r )/]x in Eq. ~8! is then
replaced by

]V~r !

]x
→e2bV~r !

]V~r !

]x
~A21!

and the factor exp@2bV(r )# so obtained excludes the un
physical contributions indgMC(r ;f,v) for r,0 and thus
partially compensates for the error made in the bound
condition of Eq.~A13! as far ash(f,v) is concerned. Sub
stitution of Eq.~A14! in Eq. ~8! with the replacement~A21!
and using Eq.~A9! leads to

hMC~f,v!5h`~f!2
2p

15
kBTn

2s3fMC~1;v!, ~A22!

which is completely similar to Eq.~A10! for h(f,v). Using
Eq. ~A18! for fMC(1;v) yields the final result

hMC~f,v!5h`~f!1h0f
2aV~v!

1

11K~a!
, ~A23!

with aV(v) given by Eq.~A12!, K(a) by Eq. ~A20!, and
a5a(v) by Eq. ~A8!.

The result~A23! for hMC(f,v) follows from Eq. ~20!
provided one uses there the low-density expression
Seq(k;f) andvH(k)5D0k

2. To compare the exact expre
sion ~A11! for h(f,v) with Eq. ~A23! for hMC(f,v) we
note that for large frequenciesv→`, a→` @cf. Eq. ~A8!#,
andK(`)51 @cf. Eqs.~A7!, ~A19!, and~A20!#, so that then

hMC~f,v!2h`~f!5
1

2
@h~f,v!2h`~f!#. ~A24!

Forv→0, a→0 @cf. Eq. ~A8!# andK(0)52/3, so that then

hMC~f,v!2h`~f!5
3

5
@h~f,v!2h`~f!#. ~A25!

Thus it appears that the mode coupling theory undere
mates the two-particle Smoluchowski contribution
h(f,v) by a factor 2 at high frequencies and 5/3 at lo
frequencies. The relevance of these factors is limited in p
tw
pe
bl

la
u-

ry

r

ti-

c-

tice since for low concentrations the main contribution
h(f,v) comes fromh`(f). For high concentrations the
factor 2 is reduced by a factorx(f) due to the replacemen
of D0 by Ds(f) in the two-particle Smoluchowski equatio
~6! ~cf. Sec. VI!.

APPENDIX B

Here we derive Eq.~20! for h(f,v) directly, using the
mode-mode coupling approximation~MMCA ! for concen-
trated suspensions 0.3<f<0.55, in analogy with what is
done for atomic liquids@29#. The basic idea behind th
MMCA is that fluctuations~or ‘‘excitations’’! of a given
dynamical variable decay predominantly into pairs of mod
associated with conserved single-particle or collective
namical variables@54#. If we restrict ourselves to the over
damped case without hydrodynamic interactions, the o
important mode is the cage diffusion mode, i.e., the Fou
transform of the single-particle density fluctuations

n~k!5(
i51

N

~eik•r i2^eik•r i&eq!. ~B1!

In this case the lowest-order MMCA takes into account
linear products of cage-diffusion modes:n(k)n(2k) @55#.

We start from the Green-Kubo expression~34! for
h(f,v) and Eq. ~35! for the stress-stress autocorrelatio
function rh(t;f). The first approximation of the MMCA
corresponds to the replacement of the full evolution opera
eVt by its projection onto the subspace of the product va
ablesn(k)n(2k),

eVt'PeVtP. ~B2!

HereV is theN-particle Smoluchowski operator@cf. Eqs.
~35! and ~37!# andP the normalized projector operator de
fined by

P5(
k

un~k!n~2k!&eq̂ n~k!n~2k!u
2N2Seq

2 ~k;f!
, ~B3!

where Seq(k;f)5(1/N)^n(k)n(2k)&eq is the equilibrium
static structure factor andk runs over the reciprocal lattice
From Eqs.~35!, ~B2!, and ~B3! we find for the stress-stres
autocorrelation function
rh~ t;f!5(
k,k8

^Sxy
h n~k!n~2k!&eq̂ n~k!n~2k!eVtn~k8!n~2k8!&eq̂ n~k8!n~2k8!Sxy

h &eq
4N4Seq

2 ~k;f!Seq
2 ~k8;f!

. ~B4!
The second approximation is to assume that the
modes appearing in the product variables propagate inde
dently from each other. This means that the four-varia
correlation function̂ n(k)n(2k)eVtn(k8)n(2k8)&eq in Eq.
~B4! can be factorized into products of two-variable corre
tion functions„as already used in the normalization ofP @Eq.
~B3!#…, giving
o
n-
e

-

^n~k!n~2k!eVtn~k8!n~2k8!&eq

5^n~k!eVtn~2k8!&eq̂ n~2k!eVtn~k8!&eq

1^n~k!eVtn~k8!&eq̂ n~2k!eVtn~2k8!&eq

5N2Feq
2 ~k;t !~dk,k81dk,2k8!, ~B5!
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with Feq(k;t)5(1/N)^n(k)eVtn(2k)&eq the equilibrium in-
termediate scattering function. As outlined in Sec. II t
main diffusion process at long times and high concentrati
0.3<f<0.55 is the cage-diffusion process rather than f
diffusion. Thus the long-time decay of the equilibrium inte
mediate scattering function is determined byvH(k;f), the
lowest eigenvalue, given by Eqs.~13! and ~14!, correspond-
ing to the eigenfunctionn(k) of a kinetic operator defined
elsewhere@18–20#. This gives

Feq~k;t !5Seq~k;f!e2vH~k;f!t. ~B6!

Performing the summation overk8 and changing the summa
tion overk to an integral overk in the limit of large volume
V, we find from Eqs.~B4!–~B6!

rh~ t;f!5
V

16p3E dkF Vh~k!

Seq~k,f!G
2

e22vH~k;f!t, ~B7!

where

Vh~k!5
1

N
^Sxy

h n~k!n~2k!&eq ~B8!

is the strength of the coupling between the microscopic st
tensorSxy

h @Eq. ~36!# and two microscopic densities. T
evaluateV(k) we use that for an arbitrary functionf (r N) one
has

^Fi f ~r
N!&eq52kBT^¹i f ~r

N!&eq, ~B9!
en

a,
s
e

ss

where r N5r1 , . . . ,rN . Equation~B9! follows from partial
integration and using the explicit form of the equilibriu
distribution function. Substituting Eq.~36! for Sxy

h in Eq.
~B8! and using Eq.~B9! yields

Vh~k!52
kBT

N (
i51

N K r i ,x ]

]r i ,y
n~k!n~2k!L

eq

. ~B10!

From Eq.~B1! for n(k) and the expression below~B3! for
Seq(k;f) it follows straightforwardly that

Vh~k!52kBTky
]

]kx
Seq~k;f! ~B11!

or, equivalently,

Vh~k!52kBT
kxky
k

Seq8 ~k;f!. ~B12!

Substitution in Eq.~B7! and performing angular integration
in k space leads to the final result forrh(t;f), i.e.,

rh~ t;f!5
~kBT!2V

60p2 E
0

`

dk k4FSeq8 ~k,f!

Seq~k,f!
G2e22vH~k;f!t.

~B13!

Then Eq.~20! for h(f,v) follows immediately from Eqs.
~34! and ~B13!.
ys.
r,
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Haro and E. G. D. Cohen,ibid. 79, 4509 ~1983!; H. van
Beijeren and J. R. Dorfman, J. Stat. Phys.23, 335 ~1980!.

@46# R. J. Phillips, J. F. Brady, and G. Bossis, Phys. Fluids31, 3462
~1988!.

@47# A. J. C. Ladd, J. Chem. Phys.93, 3483~1990!.
@48# T. N. Phung, Ph.D. thesis, California Institute of Technolog

1993 ~unpublished!.
@49# D. A. R. Jones, B. Leary, and D.V. Boger, J. Colloid Interfa

Sci. 147, 479 ~1991!; 150, 84 ~1992!.
@50# Y. S. Papir and I. M. Krieger, J. Colloid Interface Sci.34, 126

~1970!.
@51# B. Cichocki and B. U. Felderhof, J. Chem. Phys.101, 1757

~1994!; J. F. Brady,ibid. 101, 1758~1994!.
@52# Y. C. Liu and E. Y. Shue, Phys. Rev. Lett.76, 700 ~1996!.
@53# Y. C. Liu S. H. Chen, and J. S. Huang, Phys. Rev. E54, 1698

~1996!.
@54# J.-P. Hansen and I. R. McDonald,Theory of Simple Fluids

@Ref. @16~b!##, Sec. 9.5.
@55# Reference@35#, Sec. 10.2.
@56# T. W. Taylor and B. J. Ackerson, J. Chem. Phys.83, 2441

~1985!.
@57# P. N. Pusey and W. van Megen, Phys. Rev. Lett.59, 2083

~1987!.
@58# C. B. de Kruif ~private communication!.


